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Abstract. A comparative study of the inelastic scattering of 14N+
2 and 14N2 in collision with 3He atoms is

presented. The unrestricted nearside-farside (NF) method proposed by Connor [J. Chem. Phys. 104, 2297
(1995)] is applied to analyse the Close Coupling rotationally state selected angular distributions for four
kinetic energies. These four energies illustrate different regimes of the dynamics. The relationships between
the structures of the calculated differential cross-sections (DCS) and the different regions of the potential
energy surfaces involved which can be extracted from semi classical models are here easily obtained from
a simple reading of the (NF) figures. At the higher energy far-off the wells (1000 cm−1) the shape of the
DCS are quite similar for the two systems and their nearside-farside components also, showing that the
inelastic process is controlled by the short range repulsive part of the potential which is essentially the
same for these two collisions. When the energy is decreased the differences between the two wells associated
with the He–N+

2 and He–N2 complexes are responsible for the differences between the DCS for the two
systems. The farside component associated with the well become more and more prominent for the elastic
scattering while inelastic scattering remains controlled by the repulsive core in a large angular interval.
The nearside farside analysis gives also a new picture of a resonance which is regarded as an equilibrium
between the repulsive and the attractive parts of the potential.

PACS. 34.50.-s Scattering of atoms and molecules – 34.50.Ez Rotational and vibrational energy transfer
– 34.50.Pi State-to-state scattering analyses – 03.65.Sq Semiclassical theories and applications

1 Introduction

The determination of precise inelastic scattering
cross-sections and rate coefficients is very important
in astrochemistry [2] where they are used to estimate the
molecular abundances of the detected species. They are
also needed in order to optimise the cooling and trapping
of molecules which is a very active new field [3] where the
tuning of the interaction potential using external fields is
hoped to allow controlling chemical reactions [4]. Since
the accuracy of these calculations relies on the quality
of the potential energy surfaces, both the comparison
with the experimental data available and the design of
new tools allowing analysing the influence of the different
parts of the PES are necessary. A good example illus-
trating this last point can be found in rotationally state
selected differential cross-sections (DCS) which give some
of the most detailed information about the role played
by each part of the PES. Experimental observation of
rainbow effect for the rotationally elastic DCS provided
for example early evidence for the existence of Van der
Waals potential well for non reactive systems. Very often,
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however the angular scattering of elastic and inelastic
collisions is highly structured and difficult to analyse.
In a series of recent papers, Connor [1,5–7] adapted the
nearside farside (NF) method to atom diatom inelastic
scattering and showed that it is an efficient way to extract
physical insight from a close coupling computation of
the DCS. This technique was originally introduced into
nuclear heavy-ion scattering for Legendre partial wave
series (PWS) by Fuller [8] and later by Hatchell [9]. The
NF analysis is based on the decomposition of the scat-
tering amplitude into two subamplitudes. The nearside
amplitude which should include all the scattering from
the nearside of the target and the farside amplitude
which should include all the farside scattering. Structure
in the angular distribution can arise from each of the two
subamplitudes or from their interferences and can then
be analysed in terms of their links with the different parts
of the potential energy surface involved.

In two recent studies we calculated the integral
rovibrationally inelastic scattering cross-sections for the
He–N2 [10] and He–N+

2 [11] collisions. We found some
striking differences between the dynamical behaviours for
these two systems as a result of the differences between the
PES associated with these two collisions. As a matter of
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fact, the well associated with the He–N+
2 complex is four

time deeper than its neutral counterpart and the long rage
part of the two potential energy surfaces are also quite dif-
ferent (charge induced dipole for He–N+

2 and dispersion for
He–N2). In the present study we will extend this analysis
to rotationally state selected differential cross-sections. In
the next section the main steps of the NF analysis will be
reminded and the main features of the potential energy
surfaces used will be briefly described. The parameters of
the close coupling calculations will be given for both sys-
tems. The results of the calculations will then be discussed
in Section 3.

2 Computation methodology

In this study we use the most detailed version of the NF
analysis which utilizes the helicity representation of the
scattering amplitude and is valid for general state to state
inelastic scattering of the type:

A + BC(ji, mi) ⇒ A + BC(jf , mf )

where ji, jf are the rotational angular momenta of the di-
atomic molecule before and after the collision and mi, mf

are respectively their projections along the intermolecu-
lar axis. Since we will present only rotational transitions
inside the fundamental vibrational level of the diatomic
molecules (νi = νf = 0), these labels will be omitted from
now on, to keep the notation as simple as possible. This
method was first introduced and detailed very clearly by
Connor in reference [7], and therefore the main steps of
the method will only be reminded.

We start from the usual expression of the helicity
scattering amplitude [12] as a function of the body fixed
scattering matrix SJ

ji,mi→jf ,mf
:

fji,mi→jf ,mf
(θ) =

1
2ikji

∞∑

J=max(|mi|,|mf |)
(2J + 1)

×
[
SJ

ji,mi→jf ,mf
− δji,jf

δmi,mf

]
dJ

mi,mf
(θ) (1)

where θ is the scattering angle, J the total angular mo-
mentum dJ

mi,mf
(θ) is a reduced rotation matrix and kji

the translational wave number for the relative motion in
the initial channel. In this expression a constant phase
factor has been ignored.

The differential cross-section is then

Iji,mi→jf ,mf
(θ) =

∣∣fji,mi→jf ,mf
(θ)

∣∣2 (2)

and this expression is summed in order to obtain the de-
generacy averaged differential cross-section:

Iji→jf
(θ) =

1
(2ji + 1)

ji∑

mi=−ji

jf∑

mf =−jf

Iji,mi→jf ,mf
(θ).

(3)

The NF decomposition [7] is obtained from the expansion
of the Wigner matrices into travelling wave components:

dJ
mi,mf

(θ) = dJ(+)
mi,mf

(θ) + dJ(−)
mi,mf

(θ) (4)

where

dJ(±)
mi,mf

(θ) =
1
2

[
dJ

mi,mf
(θ) ∓ 2i

π
eJ

mi,mf
(θ)

]
(5)

and the eJ
mi,mf

(θ) functions were defined and named
by Connor [7] reduced rotation matrices of the second
kind. These functions were designed in order to make the
d

J(±)
mi,mf (θ) behave asymptotically (for big values of J) like

angular waves moving in the clockwise and anticlockwise
directions. A semi classical analysis [13] of the (+) and (–)
components shows that these waves respectively can be in-
terpreted as originating from the farside (F) and the near-
side (N) of the target. The nearside farside decomposition
of the scattering amplitude is obtained by substituting
expression (4) in equation (1),

fji,mi→jf ,mf
(θ) = f

(+)
ji,mi→jf ,mf

(θ) + f
(−)
ji,mi→jf ,mf

(θ) (6)

where

f
(±)
ji,mi→jf ,mf

(θ) =
1

2ikji

∞∑

J=max(|mi|,|mf |)
(2J + 1)

×
[
SJ

ji,mi→jf ,mf
− δji,jf

δmi,mf

]
dJ(±)

mi,mf
(θ). (7)

If the expression (6) is substituted in the expression (2) of
the differential cross-section an interference term between
the two sub amplitudes is obtained which is important in
angular intervals where the two subamplitudes are of the
same order of magnitude and the structure in the angular
distribution can then arise from each of the two sub am-
plitudes or from their interferences. One has also to keep
in mind that the semi classical interpretation in terms of
clockwise and anticlockwise waves is obtained from the
asymptotic behaviour of the d

J(±)
mi,mf (θ). The low J terms

in the expansion of the differential cross-section do not
follow this asymptotic behaviour and can when they are
numerically significant alter the semi classical interpreta-
tion of the structures of the angular distribution. Further-
more, the NF decomposition is meaningless when the NF
angular distributions are more structured than the DCS.

3 Calculations

3.1 The He–N2 and He–N+
2 potential energy surfaces

Both systems have been the subject of numerous stud-
ies [14–18]. However none of them were dedicated to an-
gular distributions. We calculated for both systems new
surfaces in recent works [10,11] dedicated to the study
of the vibrational quenching of the ν = 1 state of these
two diatomic molecule. Both surfaces are based on large
grids of ab initio points calculated respectively at the
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coupled cluster BCCD(T) and the MRCI level using an
aug-cc-pVQZ basis set [19]. The analytical models of the
potential energy surfaces were constructed using the re-
producing kernel Hilbert space method [20] which has
proved to be very effective for the description of several
van der Waals systems including He–HF [21], He–F2 [22]
and H–F2 [23] which we also studied. One important as-
pect of this method is that the asymptotic behaviours of
the reproducing kernel functions are known analytically
and allow to describe exactly the long range part of the
potential which differ strongly for these two systems: (dis-
persion for He–N2 and charge induced dipole for He–N+

2 ).
We found that the T-shaped structure is the most sta-

ble for both Van der Waals complexes. The well depth
value and the geometry in Jacobi coordinates associ-
ated with these intermediates are respectively: De =
−21.651 cm−1 and (R = 6.4775a0, r = 2.0743a0, θ = 90◦)
for He–N2 and De = −84.4590 cm−1 and (R = 6.08a0,
r = 2.11a0, θ = 90◦) for He–N+

2 . The geometries of the
two intermediates are then quite similar, while the well as-
sociated with the ionic complex is four time deeper than
its neutral equivalent. These strong differences in both
the intermediate energy and the long range parts of the
PES are expected to be revealed by the nearside farside
analysis.

3.2 Dynamics

We performed close coupling calculations using our code.
This program is based on the Magnus propagator in-
troduced by Light and coworkers [24]. The scattering
equations are propagated in the spaced fixed coordinates
and the asymptotic matching to diagonal spherical Bessel
functions of the first and second kind follows the lines de-
scribed by Launay [25].

We included 15 ortho rotational states in the basis set
for the vibrational level ν = 0 considered in the calcu-
lations. This means that at the highest collision energy
considered (1000 cm−1) we included four closed channels.
The maximum propagation distance was 300 Bohr and
convergence was checked as a function of the propagator
step size. The convergence of the cross-section was also
checked as a function of the total angular momentum for
each value of the kinetic energy. The maximum value of
total angular momentum J used in the calculations was
J = 50. At each point of the propagation grid the ma-
trix elements of the potential were evaluated using the
ground state vibrational wave function considered in the
calculation and expanding the potential in Legendre poly-
nomials retaining terms respectively up to l = 8 for He–N2

and l = 12 for He–N+
2 on a grid of 8 points used to calcu-

late the Gauss Hermite quadrature of the vibrational part
of the integral. A discrete variable representation (DVR)
along the Gauss Hermite grid of the diatomic rovibrational
wave functions was calculated by solving the exact di-
atomic equations using the diatomic potential described
in our previous work [10,11] and a finite basis representa-
tion (FBR) of 150 imaginary exponential wave functions
as described for example by Colbert and Miller [26].

The body fixed S matrix elements necessary to calcu-
late the helicity scattering amplitude are then obtained
from the Space Fixed ones by [25]:

SJ
ji,mi;jf ,mf

=
J+ji∑

li=|J−ji|

J+jf∑

lf =|J−jf |
i[li−lf ]

× 〈jimi, J − mi|li0〉〈jfmf , J − mf |lf0〉SJ
ji,li;jf ,lf . (8)

We then generated the reduced rotation matrices
eJ

mi,mf
(θ) using the algorithm provided by Connor in

reference [7] and checked our code using the numerical
checks proposed by him in the same paper. We then ob-
tained straightfully the nearside and farside components
of the scattering amplitude.

4 Results and discussion

We selected four collisions energies. The lowest energy
4.98 × 10−3 cm−1 is the position of a pure shape reso-
nance for the 3He–N+

2 collision without equivalent for the
4He–N+

2 collision [11]. This unusual feature will allow us
to discuss the picture of a resonance given by the nearside
farside analysis. The second energy 20 cm−1 is slightly
below the well depth associated with the He–N2 complex.
The third 100 cm−1 is moderately above the well depth
associated with the He–N+

2 complex and the last energy
1000 cm−1 is large compared to both well depths. In all
the figures apart the one dedicated to the resonance, the
curves associated with the He–N+

2 and He–N2 collisions
will be respectively presented on their left and right side.
We will also draw both nearside and farside components as
well as the usual state selected differential cross-section.
We use the unrestricted nearside farside analysis which
is known to produce nearside and farside cross-sections
which are larger than the real DCS for some transitions
and in some angular range around the forward or back-
ward directions. This drawback which has been discussed
by Connor can be corrected [7]. It is due to caustics as-
sociated with the dJ

mi,mf
(θ) and eJ

mi,mf
(θ) at θ = 0 and

θ = π; and will not affect our discussion outside these
very narrow angle intervals. At each energy we will dis-
cuss successively the purely elastic transitions, those elas-
tic in j and inelastic in m, those elastic in m and inelastic
in j, those inelastic in both j and m and those degeneracy
averaged.

4.1 E= 1000 cm−1

If we fist consider in Figure 1 the purely elastic collisions,
we see that for the He + N+

2 collision the angular dis-
tributions are forward peaked and that the nearside and
farside components are of the same order of magnitude
at this energy. They both present fast oscillations which
are of great amplitude for the nearside component and
small amplitude for the farside component, the construc-
tive and destructive interferences between the two subam-
plitudes yielding fast oscillations of big amplitude of the
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Fig. 1. (Color online) Differential cross-sections at E = 1000 cm−1, log(I(θ)) versus θ for the transitions (∆j = 0, ∆m = 0)
and (∆j �= 0, ∆m = 0) as indicated in the figure in the He–N+

2 and He–N2 collisions. The collisions involving N+
2 and N2 are

respectively on the left side and right side of the figure.
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Fig. 2. (Color online) Differential cross-sections at E = 1000 cm−1, log(I(θ)) versus θ for purely inelastic transitions (as
indicated in the figure) in the He–N+

2 and He–N2 collisions. The collisions involving N+
2 and N2 are respectively on the left side

and right side of the figure.
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Fig. 3. (Color online) Degeneracy averaged differential cross-sections at 1000 cm−1, log(I(θ)) versus θ for the transitions
indicated in the figure in the He–N+

2 and He–N2 collusions. The collisions involving N+
2 and N2 are respectively on the left side

and right side of the figure.

differential cross-section. If we compare on the same fig-
ure these features with those associated with the He–N2

collision, we already see a difference between the two sys-
tems. As a matter of fact, if the general profiles of the
DCS are similar, the nearside component is slightly larger
than the farside component, showing that the collision in-
volving neutral N2 is controlled by the repulsive part of
the potential at this energy.

If we now consider inelastic transitions, the nearside
component is always larger than its farside counterpart
now for both the neutral and the ionic systems as can be
seen in Figures 1 and 2 where the DCS associated with
transitions elastic in m and inelastic in j, elastic in j and
inelastic in m and purely inelastic are reported. The sim-
ilarities between the curves associated with the neutral
and the ionic collisions are really striking for the ∆m = 0
inelastic transitions represented in Figure 1. The famil-
iar profile of the Rainbow [27] scattering is now apparent
on both nearside and farside components. The oscillations

of the farside subamplitude are faster and the position of
the main rainbow shifts to bigger angle as the rotational
inelasticity ∆j increases. This is usual for Rainbow scat-
tering and is exemplified in Figure 2. One clearly sees also
in Figure 2 that the number of oscillations of the near-
side component decreases as ∆m increases and ∆j = 0
while the number of oscillations of the farside component
increases.

The degeneracy averaged angular distributions which
are independent of the direction chosen for the quantiza-
tion axis are reported in Figure 3. They produce a simpler
scattering pattern. The diffraction oscillations [28] are eas-
ier to identify in a narrow angular interval close to θ = 0
limited to the region where the two subamplitudes have
comparable magnitudes for the transition j = 0 → j′ = 2.
The strong divergence in the forward and backward direc-
tions of the nearside and farside components of the DCS
associated with the j = 2 → j′ = 2 transition which can
be seen in the same figure are meaningless. As mentioned
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Fig. 4. (Color online) Differential cross-sections at 100 cm−1, log(I(θ)) versus θ for the transitions (∆j = 0, ∆m = 0) and
(∆j �= 0, ∆m = 0) as indicated in the figure in the He–N+

2 and He–N2 collusions. The collisions involving N+
2 and N2 are

respectively on the left side and right side of the figure.
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Fig. 5. (Color online) Differential cross-sections at E = 100 cm−1, log(I(θ)) versus θ for purely inelastic transitions (as indicated
in the figure) in the He–N+

2 and He–N2 collisions. The collisions involving N+
2 and N2 are respectively on the left side and right

side of the figure.
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Fig. 6. (Color online) Degeneracy averaged differential cross-sections at 100 cm−1, log(I(θ)) versus θ for the transitions indicated
in the figure in the He–N+

2 and He–N2 collisions. The collisions involving N+
2 and N2 are respectively on the left side and right

side of the figure.

previously, they are due to the caustics of the dJ
mi,mf

(θ)
and eJ

mi,mf
(θ) at θ = 0 and θ = π and the travelling wave

interpretation is no longer valid in these intervals.

4.2 E =100 cm−1

If we consider again first the elastic transitions for the
He + N+

2 system we see in Figure 4 that both nearside
and farside components are equally important as in the
case of the previous energy. However the amplitudes of
the oscillations of the two components which were very
different at 1000 cm−1 are now comparable. Furthermore,
the farside subamplitude at this energy exhibits clearly a
slowly oscillating rainbow profile. As we know from a semi
classical approach the rainbow in elastic scattering differ-
ential cross-sections reflects the presence of a minimum in
the potential [29] and this structure is then a result of the
presence of the well associated with the He–N+

2 complex. If
we now consider on the same figure the elastic transitions

curves for the neutral system we see that at this energy
the nearside component associated with the repulsive part
of the potential still controls the collision for a large do-
main of angle. This is not surprising since the depth of
the well associated with the He–N2 complex is still small
compared to the collision energy. There are however now
two distinct regimes. In the forward direction the collision
is now controlled by the farside component up to 30◦.

When one considers the inelastic transitions in Fig-
ures 4 and 5 for both the neutral and the ionic collision,
one clearly sees the farside component getting closer in
amplitude to its nearside counterpart and exhibiting a
Rainbow profile which was not as obvious at 1000 cm−1.
While the nearside component almost did not change, the
oscillations of the farside component become slower and
have grown in amplitude. This shows the increase effect of
the well and even in some cases (compare Figs. 5 and 2)
the farside component now controls the collision involv-
ing N+

2 at 100 cm−1 when it was negligible compared to
the nearside component at 1000 cm−1.
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Fig. 7. (Color online) Differential cross-sections at E = 20 cm−1, log(I(θ)) versus θ for the various transitions indicated in the
figure in the He–N+

2 and He–N2 collisions. The collisions involving N+
2 and N2 are respectively on the left side and right side of

the figure.



G. Guillon and T. Stoecklin: A comparative nearside-farside analysis of the He–N+
2 and He–N2 inelastic collisions 369

Fig. 8. (Color online) Degeneracy averaged differential cross-sections at 20 cm−1, log(I(θ)) versus θ for the transitions indicated
in the figure in the He–N+

2 and He–N2 collisions. The collisions involving N+
2 and N2 are respectively on the left side and right

side of the figure.

The degeneracy averaged angular distributions re-
ported in Figure 6 again are simpler. The angular inter-
val where the two subamplitudes have comparable magni-
tudes extended considerably for He–N+

2 whereas it is still
limited for the He–N2 collision and the resulting diffrac-
tion oscillations follow the same evolution.

4.3 E =20 cm−1

This energy was chosen because it is approximately the
value of the well depth for He–N2. We see in Figures 7
and 8 when comparing with the corresponding transi-
tions at 100 cm−1 the same evolution described between
1000 cm−1 and 100 cm−1. The angular domain where the
collision is controlled by the farside component has ex-
tended again and the oscillations of the farside component
have slow down and grown again in amplitude. The col-
lision of both the neutral and the ionic species are now

the result of the strong interaction of the two sub ampli-
tudes. Inside a given transition the difference between the
nearside and farside sub amplitudes increases when ∆m
is increased and as a result, the degeneracy averaged in-
elastic cross-sections are still controlled by the nearside
component in a large angular interval for both the colli-
sions involving the neutral and the ionic specie.

4.4 Resonance

If we examine equations (1), (4) and (5) we see that when
the single partial wave associated with a resonance is
large compared to the background contributions the two
nearside farside subamplitudes result in two equal contri-
butions to the cross-section since they are complex con-
jugates of each other. The nearside farside analysis then
gives a new picture of the resonance. At the resonance
energy, there is equilibrium between the nearside and the
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Fig. 9. (Color online) Differential cross-sections at 4.98 × 10−3 cm−1, log(I(θ)) versus θ for the transitions indicated in the
figure in the 3He–N+

2 and 4He–N+
2 collisions. The collisions involving 3He and 4He are respectively on the left side and right

side of the figure.

farside subamplitudes (they are equal on the whole angu-
lar range). In other words, there is equilibrium between the
repulsive and the attractive parts of the potential. This is
indeed what can be seen in Figure 9 where we have drawn
a very low energy l = 2 resonance for the 3He–N+

2 colli-
sion. We have chosen this example since at this collision
energy the background scattering is negligible. This subtle
equilibrium is easily broken and a change of mass from 3He
to 4He is enough to remove the resonance for the 4He–N+

2
collision. The nearside farside analysis give a clear picture
of the breaking of this equilibrium as can be seen on the
same figure where the two collisions are compared at the
same energy. (3He–N+

2 on the left side and 4He–N+
2 on the

right side.) The two nearside and farside subamplitudes of
the cross-sections are equal on the whole angular interval
for the 3He–N+

2 collision while they differ strongly for the
4He–N+

2 collision.

5 Conclusion

The application of the nearside farside analysis to the com-
parison between the He–N+

2 and He–N2 inelastic collisions
sheds a new light on the dynamics of these two collisions.
Not only the usual tendencies predicted approximately by
a semi classical approach are very simply obtained here
exactly from a full quantum close coupling approach but
more detailed information about the balance between the
roles played by the repulsive and attractive parts of the in-
termolecular potential as a function of energy is also easily
produced. At the highest energy (1000 cm−1) the dynam-
ics appears to be controlled essentially by the nearside
component of the cross-section which is associated with
the repulsive core of the potential, while the farside com-
ponent of the cross-section associated with the attractive
long range part and the well, is only at the origin of small
additional oscillations in the general “rotational rainbow”
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profile given by the nearside component associated with
the repulsive heart. As a result the angular scattering is es-
sentially the same for the two collisions since the repulsive
part of the potentials are very similar. When the energy
is decreased, the angular domain where the collision is
controlled by the farside component is increased and the
oscillations of the farside component slow down and grow
in amplitude. The collision of both the neutral and the
ionic species become the result of the strong interaction
of the two sub amplitudes. In this regime the differences
between the Van der Waals wells make the angular scat-
tering differ for these two collisions. Inside a given tran-
sition the difference between the nearside and farside sub
amplitudes increases when ∆m is increased and as a re-
sult, the degeneracy averaged inelastic cross-sections are
still controlled by the nearside component and inelastic
scattering is then still controlled by the repulsive core in
a large angular interval. At the resonance energy and for
the partial wave associated with the resonance, there is
an equilibrium between the nearside and the farside sub-
amplitudes (they are equal on the whole angular range).
The nearside farside analysis then gives a new picture of
a resonance which is regarded as an equilibrium between
the repulsive and the attractive parts of the potential.

We thank Pr Connor for encouraging us to get acquainted with
the nearside farside method on the other side of the Channel.
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